Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Iran J Pharm Res ; 22(1): e136624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38084295

RESUMEN

Background: Breast cancer is a multifaceted disease characterized by genetic and epigenetic changes that lead to uncontrolled cell growth and metastasis. Early detection and treatment are crucial for managing diseases. Objectives: The objective of this study is to investigate the potential of chimeric peptides for drug delivery and to identify biomarkers associated with breast cancer. Recent studies have shown that the low-density lipoprotein receptor-related protein 1 (LRP-1) receptor has a significant impact on the development of breast cancer. In order to facilitate the identification of biomarkers, we have created a chimeric peptide that has been proven to bind successfully to the LRP-1 receptor. Methods: To identify biomarkers, we utilized advanced computational methods to conduct a meta-analysis of microarray data. Specifically, the g:Profiler and eXpression2Kinases (X2K) databases were utilized to identify gene ontologies and transcription factors. We then used the Human Protein Atlas to identify and assess crucial gene expressions. Results: Our results demonstrated that nucleolar and spindle-associated protein 1 (NUSAP1), melatonin receptor 1A (MELT), and cyclin-dependent kinase 1 (CDK1) are three hub genes that play pivotal roles in the pathogenesis of breast cancer. Conclusions: The research findings provide a deeper understanding of the molecular mechanisms involved in developing breast cancer. These findings have significant implications for developing novel therapies and diagnostics for this disease.

2.
Sci Rep ; 13(1): 17265, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828118

RESUMEN

Ovarian cancer (OC) incidence and mortality rates continue to escalate globally. Early detection of OC is challenging due to extensive metastases and the ambiguity of biomarkers in advanced High-Grade Primary Tumors (HGPTs). In the present study, we conducted an in-depth in silico analysis in OC cell lines using the Gene Expression Omnibus (GEO) microarray dataset with 53 HGPT and 10 normal samples. Differentially-Expressed Genes (DEGs) were also identified by GEO2r. A variety of analyses, including gene set enrichment analysis (GSEA), ChIP enrichment analysis (ChEA), eXpression2Kinases (X2K) and Human Protein Atlas (HPA), elucidated signaling pathways, transcription factors (TFs), kinases, and proteome, respectively. Protein-Protein Interaction (PPI) networks were generated using STRING and Cytoscape, in which co-expression and hub genes were pinpointed by the cytoHubba plug-in. Validity of DEG analysis was achieved via Gene Expression Profiling Interactive Analysis (GEPIA). Of note, KIAA0101, RAD51AP1, FAM83D, CEP55, PRC1, CKS2, CDCA5, NUSAP1, ECT2, and TRIP13 were found as top 10 hub genes; SIN3A, VDR, TCF7L2, NFYA, and FOXM1 were detected as predominant TFs in HGPTs; CEP55, PRC1, CKS2, CDCA5, and NUSAP1 were identified as potential biomarkers from hub gene clustering. Further analysis indicated hsa-miR-215-5p, hsa-miR-193b-3p, and hsa-miR-192-5p as key miRNAs targeting HGPT genes. Collectively, our findings spotlighted HGPT-associated genes, TFs, miRNAs, and pathways as prospective biomarkers, offering new avenues for OC diagnostic and therapeutic approaches.


Asunto(s)
Quinasas CDC2-CDC28 , MicroARNs , Neoplasias Ováricas , Humanos , Femenino , Multiómica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Redes Reguladoras de Genes , Proteínas de Ciclo Celular/metabolismo , Quinasas CDC2-CDC28/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo
3.
Int J Pharm ; 642: 123095, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37268031

RESUMEN

Salinomycin is a polyether compound that exhibits strong anticancer activity and is known as the cancer stem cell inhibitor that reached clinical testing. The rapid elimination of nanoparticles from the bloodstream by the mononuclear phagocyte system (MPS), the liver, and the spleen, accompanied by protein corona (PC) formation, restricts in vivo delivery of nanoparticles in the tumor microenvironment (TME). The DNA aptamer (TA1) that successfully targets the overexpressed CD44 antigen on the surface of breast cancer cells suffers strongly from PC formation in vivo. Thus, cleverly designed targeted strategies that lead to the accumulation of nanoparticles in the tumor become a top priority in the drug delivery field. In this work, dual redox/pH-sensitive poly (ß-amino ester) copolymeric micelles modified with CSRLSLPGSSSKpalmSSS peptide and TA1 aptamer, as dual targeting ligands, were synthesized and fully characterized by physico-chemical methods. These biologically transformable stealth NPs were altered into the two ligand-capped (SRL-2 and TA1) NPs for synergistic targeting of the 4T1 breast cancer model after exposure to the TME. The PC formation was reduced sharply in Raw 264.7 cells by increasing the CSRLSLPGSSSKpalmSSS peptide concentration in modified micelles. Surprisingly, in vitro and in vivo biodistribution findings showed that dual targeted micelle accumulation in the TME of 4T1 breast cancer model was significantly higher than that of single modified formulation, along with deep penetration 24 h after intraperitoneal injection. Also, an in vivo treatment study showed remarkable tumor growth inhibition in 4T1 tumor-bearing Balb/c mice, compared to different formulations, with a 10% lower therapeutic dose (TD) of SAL that was confirmed by hematoxylin and eosin staining (H&E) and the TUNEL assay. Overall, in this study, we developed smart transformable NPs in which the body's own engineering systems alter their biological identity, which resulted in a reduction in therapeutic dosage along with a lowered off-target effect.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Micelas , Distribución Tisular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Resultado del Tratamiento , Péptidos/farmacología , Ratones Endogámicos BALB C
4.
Bioimpacts ; 13(2): 133-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193076

RESUMEN

Introduction: Blood-brain barrier with strictly controlled activity participates in a coordinated transfer of bioactive molecules from the blood to the brain. Among different delivery approaches, gene delivery is touted as a promising strategy for the treatment of several nervous system disorders. The transfer of exogenous genetic elements is limited by the paucity of suitable carriers. As a correlate, designing high-efficiency biocarriers for gene delivery is challenging. This study aimed to deliver pEGFP-N1 plasmid into the brain parenchyma using CDX-modified chitosan (CS) nanoparticles (NPs). Methods: Herein, we attached CDX, a 16 amino acids peptide, to the CS polymer using bifunctional polyethylene glycol (PEG) formulated with sodium tripolyphosphate (TPP), by ionic gelation method. Developed NPs and their nanocomplexes with pEGFP-N1 (CS-PEG-CDX/pEGFP) were characterized using DLS, NMR, FTIR, and TEM analyses. For in vitro assays, a rat C6 glioma cell line was used for cell internalization efficiency. The biodistribution and brain localization of nanocomplexes were studied in a mouse model after intraperitoneal injection using in vivo imaging and fluorescent microscopy. Results: Our results showed that CS-PEG-CDX/pEGFP NPs were uptaken by glioma cells in a dose-dependent manner. In vivo imaging revealed successful entry into the brain parenchyma indicated with the expression of green fluorescent protein (GFP) as a reporter protein. However, the biodistribution of developed NPs was also evident in other organs especially the spleen, liver, heart, and kidneys. Conclusion: Based on our results, CS-PEG-CDX NPs can provide a safe and effective nanocarrier for brain gene delivery into the central nervous system (CNS).

5.
Cell Commun Signal ; 21(1): 64, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973780

RESUMEN

Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.


Asunto(s)
Exosomas , Vesículas Extracelulares , Corona de Proteínas , Exosomas/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Proteínas/metabolismo
6.
Int J Pharm ; 636: 122815, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907279

RESUMEN

Fingolimod (Fin), an FDA-approved drug, is used to control relapsing-remitting multiple sclerosis (MS). This therapeutic agent faces crucial drawbacks like poor bioavailability rate, risk of cardiotoxicity, potent immunosuppressive effects, and high cost. Here, we aimed to assess the therapeutic efficacy of nano-formulated Fin in a mouse model of experimental autoimmune encephalomyelitis (EAE). Results showed the suitability of the present protocol in the synthesis of Fin-loaded CDX-modified chitosan (CS) nanoparticles (NPs) (Fin@CSCDX) with suitable physicochemical features. Confocal microscopy confirmed the appropriate accumulation of synthesized NPs within the brain parenchyma. Compared to the control EAE mice, INF-γ levels were significantly reduced in the group that received Fin@CSCDX (p < 0.05). Along with these data, Fin@CSCDX reduced the expression of TBX21, GATA3, FOXP3, and Rorc associated with the auto-reactivation of T cells (p < 0.05). Histological examination indicated a low-rate lymphocyte infiltration into the spinal cord parenchyma after the administration of Fin@CSCDX. Of note, HPLC data revealed that the concentration of nano-formulated Fin was about 15-fold less than Fin therapeutic doses (TD) with similar reparative effects. Neurological scores were similar in both groups that received nano-formulated fingolimod 1/15th of free Fin therapeutic amounts. Fluorescence imaging indicated that macrophages and especially microglia can efficiently uptake Fin@CSCDX NPs, leading to the regulation of pro-inflammatory responses. Taken together, current results indicated that CDX-modified CS NPs provide a suitable platform not only for the efficient reduction of Fin TD but also these NPs can target the brain immune cells during neurodegenerative disorders.


Asunto(s)
Quitosano , Encefalomielitis Autoinmune Experimental , Nanopartículas , Animales , Ratones , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Quitosano/uso terapéutico , Linfocitos T/metabolismo , Ratones Endogámicos C57BL
7.
Cancer Lett ; 557: 216077, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36731592

RESUMEN

At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/patología , Neoplasias Encefálicas/patología , Sistemas de Liberación de Medicamentos/métodos , Encéfalo/patología , Vesículas Extracelulares/patología
8.
Cell Commun Signal ; 21(1): 19, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691072

RESUMEN

As a common belief, most viruses can egress from the host cells as single particles and transmit to uninfected cells. Emerging data have revealed en bloc viral transmission as lipid bilayer-cloaked particles via extracellular vesicles especially exosomes (Exo). The supporting membrane can be originated from multivesicular bodies during intra-luminal vesicle formation and autophagic response. Exo are nano-sized particles, ranging from 40-200 nm, with the ability to harbor several types of signaling molecules from donor to acceptor cells in a paracrine manner, resulting in the modulation of specific signaling reactions in target cells. The phenomenon of Exo biogenesis consists of multiple and complex biological steps with the participation of diverse constituents and molecular pathways. Due to similarities between Exo biogenesis and virus replication and the existence of shared pathways, it is thought that viruses can hijack the Exo biogenesis machinery to spread and evade immune cells. To this end, Exo can transmit complete virions (as single units or aggregates), separate viral components, and naked genetic materials. The current review article aims to scrutinize challenges and opportunities related to the exosomal delivery of viruses in terms of viral infections and public health. Video Abstract.


Asunto(s)
Exosomas , Virosis , Virus , Humanos , Exosomas/metabolismo , Virosis/metabolismo , Transducción de Señal , Virión
9.
J Control Release ; 349: 67-96, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779656

RESUMEN

The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.


Asunto(s)
Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
10.
Sci Rep ; 12(1): 11774, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821262

RESUMEN

Here, we investigated the photothermal effect of gold nanorods (GNRs) on human neuroblastoma CD133+ cancer stem cells (CSCs) via autophagic cell death. GNRs were synthesized using Cetyltrimethylammonium bromide (CTAB), covered with bovine serum albumin (BSA). CD133+ CSCs were enriched from human neuroblastoma using the magnetic-activated cell sorting (MACS) technique. Cells were incubated with GNRs coated with BSA and exposed to 808-nm near-infrared laser irradiation for 8 min to yield low (43 °C), medium (46 °C), and high (49 °C) temperatures. After 24 h, the survival rate and the percent of apoptotic and necrotic CSCs were measured using MTT assay and flow cytometry. The expression of different autophagy-related genes was measured using polymerase chain reaction (PCR) array analysis. Protein levels of P62 and LC3 were detected using an enzyme-linked immunosorbent assay (ELISA). The viability of CSC was reduced in GNR-exposed cells compared to the control group (p < 0.05). At higher temperatures (49 °C), the percent of apoptotic CSCs, but not necrotic cells, increased compared to the lower temperatures. Levels of intracellular LC3 and P62 were reduced and increased respectively when the temperature increased to 49 °C (p < 0.05). These effects were non-significant at low and medium temperatures (43 and 46 °C) related to the control CSCs (p > 0.05). The clonogenic capacity of CSC was also inhibited after photothermal therapy (p < 0.05). Despite these changes, no statistically significant differences were found in terms of CSC colony number at different temperatures regardless of the presence or absence of HCQ. Based on the data, the combination of photothermal therapy with HCQ at 49 °C can significantly abort the CSC clonogenic capacity compared to the control-matched group without HCQ (p < 0.0001). PCR array showed photothermal modulation of CSCs led to alteration of autophagy-related genes and promotion of co-regulator of apoptosis and autophagy signaling pathways. Factors related to autophagic vacuole formation and intracellular transport were significantly induced at a temperature of 49 °C (p < 0.05). We also note the expression of common genes belonging to autophagy and apoptosis signaling pathways at higher temperatures. Data showed tumoricidal effects of laser-irradiated GNRs by the alteration of autophagic response and apoptosis.


Asunto(s)
Nanotubos , Neuroblastoma , Autofagia , Línea Celular Tumoral , Oro/farmacología , Humanos , Células Madre Neoplásicas , Neuroblastoma/terapia , Albúmina Sérica Bovina/farmacología
11.
J Control Release ; 345: 371-384, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35301054

RESUMEN

The effective treatment of glioma through conventional chemotherapy is proved to be a great challenge in clinics. The main reason is due to the existence of two physiological and pathological barriers respectively including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) that prevent most of the chemotherapeutics from efficient delivery to the brain tumors. To address this challenge, an ideal drug delivery system would efficiently traverse the BBB and BBTB and deliver the therapeutics into the glioma cells with high selectivity. Herein, a targeted delivery system was developed based on nanostructured lipid carriers (NLCs) modified with two proteolytically stable D-peptides, D8 and RI-VAP (Dual NLCs). D8 possesses high affinity towards nicotine acetylcholine receptors (nAChRs), overexpressed on brain capillary endothelial cells (BCECs), and can penetrate through the BBB with high efficiency. RI-VAP is a specific ligand of cell surface GRP78 (csGRP78), a specific angiogenesis and cancer cell-surface marker, capable of circumventing the BBTB with superior glioma-homing property. Dual NLCs could internalize into BCECs, tumor neovascular endothelial cells, and glioma cells with high specificity and could penetrate through in vitro BBB and BBTB models with excellent efficiency compared to non-targeted or mono-targeted NLCs. In vivo whole-animal imaging and ex vivo imaging further confirmed the superior targeting capability of Dual NLCs towards intracranial glioma. When loaded with Bortezomib (BTZ), Dual NLCs attained the highest therapeutic efficiency by means of superior in vitro cytotoxicity and apoptosis and prolonged survival rate and efficient anti-glioma behavior in intracranial glioma bearing mice. Collectively, the designed targeting platform in this study could overcome multiple barriers and effectively deliver BTZ to glioma cells, which represent its potential for advanced brain cancer treatment with promising therapeutic outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Barrera Hematoencefálica/metabolismo , Bortezomib/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales/metabolismo , Glioma/tratamiento farmacológico , Lípidos/uso terapéutico , Ratones
12.
Int J Pharm ; 614: 121458, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35017025

RESUMEN

For successful translation of targeting nanomedicines from bench to bedside, it is vital to address their most common drawbacks namely rapid clearance and off-target accumulation. These complications evidently originate from a phenomenon called "protein corona (PC) formation" around the surface of targeting nanoparticles (NPs) which happens once they encounter the bloodstream and interact with plasma proteins with high collision frequency. This phenomenon endows the targeting nanomedicines with a different biological behavior followed by an unexpected fate, which is usually very different from what we commonly observe in vitro. In addition to the inherent physiochemical properties of NPs, the targeting ligands could also remarkably dictate the amount and type of adsorbed PC. As very limited studies have focused their attention on this particular factor, the present review is tasked to discuss the best simulated environment and latest characterization techniques applied to PC analysis. The effect of PC on the biological behavior of targeting NPs engineered with different targeting moieties is further discussed. Ultimately, the recent progresses in manipulation of nano-bio interfaces to achieve the most favorite therapeutic outcome are highlighted.


Asunto(s)
Nanopartículas , Corona de Proteínas , Nanomedicina
13.
Adv Pharm Bull ; 11(4): 675-683, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34888214

RESUMEN

Purpose: This study aimed to design gentamicin-conjugated poly (amidoamine) (PAMAM) dendrimers to increase the therapeutic efficiency of gentamicin against Pseudomonas aeruginosa. Methods: Gentamicin-presenting dendrimers were synthesized using MAL-PEG3400-NHS as a redox-sensitive linker to attach gentamicin to the surface of G4 PAMAM dendrimers. The gentamicin molecules were thiolated by using Traut reagent. Then, the functionalized gentamicin molecules were attached to PEGylated PAMAM dendrimers through simple and high selectively maleimide (MAL)-thiol reaction. The structure of gentamicin-conjugated PAMAM dendrimers was characterized and confirmed using nuclear magnetic resonance (NMR), dynamic light scattering (DLS), zeta potential analysis, and transmission electron microscopy (TEM) imaging. The antibacterial properties of the synthesized complex were examined on P. aeruginosa and compared to gentamycin alone. Results: NMR, DLS, zeta potential analysis, and TEM imaging revealed the successful conjugation of gentamicin to PAMAM dendrimers. Data showed the appropriate physicochemical properties of the synthesized nanoparticles. We found a 3-fold increase in the antibacterial properties of gentamicin conjugated to the surface of PAMAM dendrimers compared to non-conjugated gentamicin. Based on data, the anti-biofilm effects of PAMAM-Gentamicin dendrimers increased at least 13 times more than the gentamicin in normal conditions. Conclusion: Data confirmed that PAMAM dendrimer harboring gentamicin could be touted as a novel smart drug delivery system in infectious conditions.

14.
Sci Rep ; 11(1): 23984, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907215

RESUMEN

Unraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.


Asunto(s)
Autofagia/efectos de los fármacos , Oro , Hipotermia Inducida , Nanopartículas del Metal , Nanotubos/química , Neuroblastoma , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Oro/química , Oro/farmacología , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Proteínas de Neoplasias/biosíntesis , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/terapia
15.
Biomedicines ; 9(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34829766

RESUMEN

In recent years, smart/stimuli-responsive hydrogels have drawn tremendous attention for their varied applications, mainly in the biomedical field. These hydrogels are derived from different natural and synthetic polymers but are also composite with various organic and nano-organic fillers. The basic functions of smart hydrogels rely on their ability to change behavior; functions include mechanical, swelling, shaping, hydrophilicity, and bioactivity in response to external stimuli such as temperature, pH, magnetic field, electromagnetic radiation, and biological molecules. Depending on the final applications, smart hydrogels can be processed in different geometries and modalities to meet the complicated situations in biological media, namely, injectable hydrogels (following the sol-gel transition), colloidal nano and microgels, and three dimensional (3D) printed gel constructs. In recent decades smart hydrogels have opened a new horizon for scientists to fabricate biomimetic customized biomaterials for tissue engineering, cancer therapy, wound dressing, soft robotic actuators, and controlled release of bioactive substances/drugs. Remarkably, 4D bioprinting, a newly emerged technology/concept, aims to rationally design 3D patterned biological matrices from synthesized hydrogel-based inks with the ability to change structure under stimuli. This technology has enlarged the applicability of engineered smart hydrogels and hydrogel composites in biomedical fields. This paper aims to review stimuli-responsive hydrogels according to the kinds of external changes and t recent applications in biomedical and 4D bioprinting.

16.
Mol Pharm ; 18(12): 4341-4353, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34779630

RESUMEN

The formation of protein corona (PC) around nanoparticles (NPs) has been reported inside biological conditions. This effect can alter delivery capacity toward the targeted tissues. Here, we synthesized folic acid-modified chitosan NPs (FA-CS NPs) using different concentrations of folic acid (5, 10, and 20%). FA-CS NPs were exposed to plasmas of breast cancer patients and healthy donors to evaluate the possibility of PC formation. We also monitored uptake efficiency in in vitro conditions after incubation with human breast cancer cell line MDA-MB-231 and monocyte/macrophage-like Raw264.7 cells. Data showed that the formation of PC around FA-CS NPs can change physicochemical properties coincided with the rise in NP size and negative surface charge. SDS-PAGE electrophoresis revealed differences in the type and content rate of plasma proteins attached to NP surface in a personalized manner. Based on MTT data, the formation of PC around NPs did not exert cytotoxic effects on MDA-MB-231 cells while this phenomenon reduced uptake rate. Fluorescence imaging and flow cytometry analyses revealed reduced cellular internalization rate in NPs exposed to patients' plasma compared to the control group. In contrast to breast MDA-MB-231 cells, Raw264.7 cells efficiently adsorbed the bare and PC-coated NPs from both sources, indicating the involvement of ligand-receptor-dependent and independent cellular engulfment. These data showed that the PC formed on the FA-CS NPs is entirely different in breast cancer patients and healthy counterparts. PC derived from patients' plasma almost abolishes the targeting efficiency of FA-CS NPs even in different mechanisms, while this behavior was not shown in the control group. Surprisingly, Raw264.7 cells strongly adsorbed the PC-coated NPs, especially when these particles were in the presence of patients' sera. It is strongly suggested that the formation of PC around can affect delivering capacity of FA-CS NPs to cancer cells. It seems that the PC-coated FA-CS NPs can be used as an efficient delivery strategy for the transfer of specific biomolecules in immune system disorders.


Asunto(s)
Neoplasias de la Mama/sangre , Neoplasias de la Mama/tratamiento farmacológico , Quitosano/química , Sistemas de Liberación de Medicamentos , Ácido Fólico/química , Nanopartículas/química , Línea Celular Tumoral , Femenino , Humanos , Macrófagos/fisiología
17.
Sci Rep ; 11(1): 21425, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728703

RESUMEN

Adjuvant-aided combination chemotherapy is one of the most effective ways of cancer treatment by overcoming the multidrug resistance (MDR) and reducing the side-effects of anticancer drugs. In this study, Conferone (Conf) was used as an adjuvant in combination with Doxorubicin (Dox) for inducing apoptosis to MDA-MB-231 cells. Herein, the novel biodegradable amphiphilic ß-cyclodextrin grafted poly maleate-co-PLGA was synthesized by thiol-ene addition and ring-opening process. Micelles obtained from the novel copolymer showed exceptional properties such as small size of around 34.5 nm, CMC of 0.1 µg/mL, and cell internalization of around 100% at 30 min. These novel engineered micelles were used for combination delivery of doxorubicin-conferone with high encapsulation efficiency of near 100% for both drugs. Our results show that combination delivery of Dox and Conf to MDA-MB-231 cells had synergistic effects (CI < 1). According to cell cycle and Annexin-V apoptosis analysis, Dox-Conf loaded micelle significantly induce tumor cell apoptosis (more than 98% of cells population showed apoptosis at IC50 = 0.259 µg/mL). RT-PCR and western-blot tests show that Dox-Conf loaded ßCD-g-PMA-co-PLGA micelle induced apoptosis via intrinsic pathway. Therefore, the unique design of multi-functional pH-sensitive micelles open a new perspective for the development of nanomedicine for combination chemo-adjuvant therapy against malignant cancer.


Asunto(s)
Neoplasias de la Mama/patología , Cumarinas/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Micelas , beta-Ciclodextrinas/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Ciclo Celular , Proliferación Celular , Cumarinas/administración & dosificación , Cumarinas/química , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células Tumorales Cultivadas
18.
Adv Pharm Bull ; 11(3): 522-529, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34513627

RESUMEN

Purpose: Hydrophilic drugs are extensively applied in clinical applications. Inadequate dermal penetration of these drugs is a great challenge. Incorporation of drugs into nano-carrier systems overcomes lower penetration drawbacks. Invasomes are novel nano-carrier systems which enhance transdermal penetration by using terpene and ethanol in their structures. buprenorphine and bupivacaine hydrochlorides are two potent analgesic drugs that are loaded simultaneously in the nano-invasome structure as opioid and non-opioid drugs. Methods: The full factorial experimental design was used for planning and estimating optimum formulations of invasome systems. Three influential factors like terpene type, terpene concentration and preparation method were comprehensively analyzed for achieving high encapsulation efficiency (EE) and optimum size. Results: The mean sizes of designed invasomes were in the range of 0.39-5.86 µm and high values of EE and loading capacity (LC) were reported as 98.77 and 19.75 for buprenorphine-loaded invasome, respectively. Zeta potential measurements confirmed that the obtained high value of EE might be as a result of reversible ionic interactions between positively charged drugs and negatively charged phospholipidic part of invasome structure. Another characterization of the prepared formulations was carried out by Fourier transform infrared (FTIR), X-ray diffraction (XRD) and dynamic light scattering (DLS) technique. Conclusion: The satisfactory obtained results of formulations encourage researchers to get optimum topical analgesic formulations with potent and rapid onset time properties required in invasive cutaneous procedures.

19.
Genes (Basel) ; 12(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356120

RESUMEN

The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteína HMGA2/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Dendrímeros/metabolismo , Dendrímeros/farmacología , Dendrímeros/uso terapéutico , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Proteína HMGA2/metabolismo , Humanos , Células MCF-7 , Metotrexato/farmacología , Nylons/farmacología , ARN Interferente Pequeño/genética
20.
Cell Biosci ; 11(1): 142, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294165

RESUMEN

Nowadays, a large population around the world, especially the elderly, suffers from neurological inflammatory and degenerative disorders/diseases. Current drug delivery strategies are facing different challenges because of the presence of the BBB, which limits the transport of various substances and cells to brain parenchyma. Additionally, the low rate of successful cell transplantation to the brain injury sites leads to efforts to find alternative therapies. Stem cell byproducts such as exosomes are touted as natural nano-drug carriers with 50-100 nm in diameter. These nano-sized particles could harbor and transfer a plethora of therapeutic agents and biological cargos to the brain. These nanoparticles would offer a solution to maintain paracrine cell-to-cell communications under healthy and inflammatory conditions. The main question is that the existence of the intact BBB could limit exosomal trafficking. Does BBB possess some molecular mechanisms that facilitate the exosomal delivery compared to the circulating cell? Although preliminary studies have shown that exosomes could cross the BBB, the exact molecular mechanism(s) beyond this phenomenon remains unclear. In this review, we tried to compile some facts about exosome delivery through the BBB and propose some mechanisms that regulate exosomal cross in pathological and physiological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...